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[1] This study presents a finite volume hydrodynamic model for shallow water flow that
computes on a coarse grid, but accounts for high-resolution bathymetry and roughness
variations on a subgrid. The detailed information can be incorporated by using the
assumption of a uniform flow direction and a uniform friction slope within a part of a
coarse-grid cell. It is shown in two examples that the results of coarse-grid simulations
become as good as high-resolution results, but at much lower computational cost.
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1. Introduction

[2] There exists a strong interest in fast and accurate
hydrodynamic models. They are used for various purposes,
like flood forecasting or to form the basis for morphody-
namic models. Both types of simulations need fast models
for large domains and at high resolution. Flood forecasting
models need to be fast, because such models are to provide
results at short notice. Morphodynamic simulations need
fast hydrodynamic solvers as the duration of a simulation
period is generally long. Nowadays, detailed information
of the bathymetry is available due to improved measure-
ment techniques, like LIDAR. Bathymetric data with a
very high spatial resolution (of the order of magnitude of
meters) can be obtained. The discretization for numerical
modeling is still a trade-off between accuracy and compu-
tation time. The computation time is generally a limiting
factor for the use of high-resolution bathymetry data. Tak-
ing into account the high-resolution data on a subgrid
would, therefore, be a possible trade-off. There are various
methods proposed to incorporate high-resolution bathyme-
try data as some kind of subgrid: Sanders et al. [2008],
Cea and V�azquez-Cend�on [2010], Bates [2000], and Yu and
Lane [2006]. Casulli [2009] introduced a subgrid-based
hydrodynamic model, accounting for high-resolution ba-
thymetry information in coarse-grid simulations. It is based
on the principle that the bed level can vary strongly over
short distances, while water levels vary over larger scales.
The subgrid method deals with two grids, a coarse compu-
tation grid and an underlying subgrid with a higher resolu-
tion. The bed level is defined on the subgrid and the water
level is assumed to be uniform within a coarse-grid cell.
The computations of cell volumes (cell-integrated depth)

and cross sections are performed using the high-resolution
bathymetry data.

[3] Friction is represented by a nonlinear function of a
friction coefficient and velocity. Both can vary strongly
over short distances, due to variations in roughness and
depth. Coarse-grid simulations use cell averaged depths
and velocities, neglecting effects of variations on smaller
scale. This causes an overestimation of the friction, which
can be illustrated for a simple steady uniform one-
dimensional (1-D) flow. For such case, the discharge can
be computed analytically using the Ch�ezy equation. The

discharge is Q ¼ WCzH
3
2
ffiffiffiffi
ib
p

, with: W is the width of chan-
nel, Cz is the Ch�ezy coefficient, H is the total depth, and ib
is the bed slope. When the depth in transverse direction is
not uniform, for example, when half of the channel has
depth H1 and the other half H2, the total discharge is given

by Q ¼ 1
2 WCz

ffiffiffiffi
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p
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which is always equal or

larger than a discharge based on the average depth:

Q ¼ WCz
ffiffiffiffi
ib
p

1
2 H1 þ 1

2 H2

� �3
2. We elaborate on this in the

example of a compound channel in section 3.1. Generally,
the friction coefficient is lowered, during the calibration
phase, to correct for this underestimation of the convey-
ance. However, the friction coefficient becomes contami-
nated with effects of a varying depth and, therefore,
becomes grid size dependent. Already in the 1930s, the
effect of a varying velocity field on the friction in 1-D mod-
els was considered by Lorentz et al. [1926] and Lotter
[1933].

[4] There are numerous options for the spatial discretiza-
tion of the flow domain. Structured and unstructured grids
have both their advantages and disadvantages. For a struc-
tured grid, the discretized equations are relatively simple
even for anisotropic stresses, but the representation of arbi-
trary and moving boundaries, for example, due to flooding
and drying, is generally a problem. Land-water interfaces
vary in type. They can be very sharp, when dealing, for
example, with steep dikes or quays. Then, the interfaces do
not move in space due to water level variations. In this
case, unstructured grids may have an advantage over Carte-
sian grids. When dealing with tidal flats or river banks with
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mildly sloping bottoms the land-water interfaces vary in
time. In this case, unstructured grids face similar problems
as structured grids. Some classical disadvantages of struc-
tured grids compared to unstructured grids have been
largely removed by proposing flow solvers that deal with
moving and arbitrary boundaries, such as cut-cell methods,
immersed boundary methods, quad trees, and so on [Aftos-
mis et al., 1998; Ye et al., 1999; Causon et al., 2001;
Mittal and Iaccarino, 2005; Poretti and De Amicis, 2011;
Liang and Borthwick, 2009]. The subgrid method of Casu-
lli [2009] offers an elegant algorithm to handle the (mov-
ing) boundaries accurately for unstructured grids. This
approach combines the advantages of the accurate repre-
sentation of both sharp and mild land-water interfaces with
effectively dealing with the nonlinearity of the continuity
equation, due to flooding and drying. This method is also
effective for structured grids. Here we use Cartesian grids
for simplicity, but the proposed method can also be applied
to unstructured grids.

[5] In this paper, we present a finite volume method for
shallow water flow. We use a subgrid-based formulation
for the continuity (similar to Casulli [2009]) and combine
it with a subgrid-based momentum conservative scheme
for the advection and a subgrid-based formulation for bot-
tom friction. The formulation for bottom friction shows
similarities with the effective depth defined in Defina
[2000] and Yu and Lane [2011], but in addition to these
studies the spatial variation in roughness is considered too.

[6] Section 2 describes the model formulation based on
the shallow water equations, detailing the incorporation of
subgrid information in the coarse-grid model. Section 3
shows two numerical steady-state examples. In the first
example, the flow in a compound channel is considered.
The effect of varying depth and roughness on the flow is
isolated. We emphasize the advantage of using local rough-
ness and depth information. The flow in a U-shaped bend is
the second example. It shows that a sufficiently refined sub-
grid can represent both sharp and mild land/water interfa-
ces with satisfactory accuracy. Moreover, the example
shows that the flow can be modeled well for a low resolu-
tion of the computational grid. The paper is finalized with
conclusions and discussions on the applicability and limita-
tions of the method in section 4.

2. Model Description

2.1. Definition of Variables

[7] A subgrid-based, two-dimensional, depth-averaged
finite volume model for shallow water is introduced. It
accounts for bed level and roughness variations on a
smaller scale than the dimensions of a computation cell.
The subgrid is a small raster of subgrid cells (pixels) with a
surface area of �x� �y ¼ �i;j and contains all high-
resolution data. The coarse grid has a low resolution com-
pared to the subgrid and is similar to the computation grid
of traditional models. It supports coarse-grid variables such
as water levels and velocities and the full time integration.
In principle, this grid can be of any type, structured, or
unstructured. For reasons described in the introduction, we
chose for a structured, staggered, Cartesian computation
grid. Figure 1a shows a single coarse-grid cell with a non-
uniform bed level which is defined on the subgrid. Water
levels are defined in the coarse-grid cell centers and veloc-
ities at the cell edges. Two types of computation domains
are considered. A water level domain has its center at a
water level point and is indicated by �m;n. A momentum
domain has its center at a velocity point in either x direction
or y direction, indicated by for instance �mþ1

2;n
and �m;nþ1

2
,

respectively (Figure 1b). The subscripts m, n always refer
to the location of a coarse-grid variable and the subscripts
i, j to variables defined on the subgrid.

[8] The discrete variables are translated from the subgrid
or the coarse grid into integrable functions using a simple
step function, which is piecewise discontinuous. This so-
called indicator function �D is defined for domain D by:

�D x; y; tð Þ ¼ 1 x; yð Þ 2 D
0 x; yð Þ 62 D

�
ð1Þ

[9] The dimensions of domain D can be different for
each defined variable and will be specified later. The water
level � x; y; tð Þ, at arbitrary location and time, is composed
from the coarse grid discrete water levels �m;n. Using the
indicator function, the water level is defined by:

� x; y; tð Þ ¼
XM
m¼1

XN

n¼1

�m;n��m;n ð2Þ

Figure 1. (a) A schematic view of a computation cell with an underlying subgrid, where a part of the
domain is dry and (b) an overview of computation cells and domains.
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where M and N are the maximum number of coarse-grid
cells in x direction and y direction, respectively. The size of
domain �m;n ranges from zero to the area of a coarse-grid
cell �x��yð Þ. The exact size of �m;n depends on the wet
domain within the cell, that is, the water level and the ba-
thymetry. When parts of the �m;n domain fall dry, its size
decreases. The bed level d x; yð Þ, based on bathymetry data,
is defined positive in downward direction (Figure 1a) and is
defined on subgrid level:

d x; yð Þ ¼
XI

i¼1

XJ

j¼1

di;j�Pi;j ð3Þ

where I and J are the maximum number of subgrid cells in
x direction and y direction and di;j is the discrete bed level
and is defined in the center of a pixel. Pi;j is a domain corre-
sponding to a wet pixel with surface area �i;j. A domain �,
related to the coarse grid, contains at least one, but usually
multiple subdomains P. Note that the size and number of �
domains may vary in time. A wet pixel exists when the fol-
lowing condition applies locally:

H x; y; tð Þ ¼ d x; yð Þ þ � x; y; tð Þ � 0 ð4Þ

in which H is the water depth. Within a coarse-grid cell
(domain �m;n) the water level is uniform, but the water
depth can vary due to the subgrid scale variation of the ba-
thymetry (see Figure 1a).

[10] Similar to equation (3) the friction coefficient is
defined on subgrid level:

cf x; yð Þ ¼
XI

i¼1

XJ

j¼1

cf :i;j�Pi;j ð5Þ

with cf :i;j the discrete friction coefficient. The friction coef-
ficient can be given by Ch�ezy, Manning, or any other fric-
tion formulation. The depth averaged velocity vector ~u
consists of the components u x; y; tð Þ and v x; y; tð Þ. The ve-
locity field is defined by the discrete coarse-grid velocities
ðumþ1

2;n
and vm;nþ1

2
Þ and the indicator function for domain

D ¼ �mþ1
2;n

and D ¼ �m;nþ1
2
:

u x; y; tð Þ ¼
XM
m¼0

XN

n¼0

umþ1
2;n

��
mþ1

2
;n

and

v x; y; tð Þ ¼
XM
m¼0

XN

n¼0

vm;nþ1
2
��

m;nþ1
2

ð6Þ

[11] For convenience later in this paper, the coarse-grid
cells are divided into four areas: South-West (SW), South-
East (SE), North-West (NW), and North-East (NE), see
Figure 2. This division is used for both water level and mo-
mentum domains. A similar notation is used to refer to the
edges (s) of a cell ; North (N), South (S), East (E), and
West (W).

2.2. Continuity Equation

[12] The continuity equation reads in finite volume
formulation:

V�m;n

� �
t
¼ Qu

m�1
2;n
� Qu

mþ1
2;n
þ Qv

m;n�1
2
� Qv

m;nþ1
2

ð7Þ

where the subscript t indicates a partial derivative with
respect to time, and

V�m;n tð Þ ¼
ZZ
�m;n

H x; y; tð Þd�; ð8Þ

[13] Qu and Qv are the discharges over the four edges of
domain �m;n in u direction and v direction. For example,
the discharge at the East side of the cell is defined by:

Qu
mþ1

2;n
¼ umþ1

2;n
AsE

m;n
ð9Þ

AsE
m;n

tð Þ ¼
Z
sE

m;n

H x; y; tð Þdy ð10Þ

where As is the cross-sectional area of edge s.

2.3. Momentum Equation

[14] Inertia, advection of momentum, pressure force, and
friction are considered in the momentum balance. This is
explained in x direction only, but is similar in y direction:

uVð Þt þ ~F
x
adv þ ~F

x
pres þ ~F

x
fric ¼ 0 ð11Þ

where ~F is a force normalized with the density, which is
assumed constant. The spatial discretization for each term
is described below.
2.3.1. Bottom Friction

[15] In case of gravity-driven shallow-water flow,
friction coefficients are often set relatively small, much
smaller than would be expected based on the type of bed
surface found in the area of the flow. This to correct an
overestimation of the friction, due to the neglected effects
of small-scale variations in roughness and velocity on the
bottom friction as explained in the introduction. By making
an estimate of the velocity field on subgrid scale, we want

Figure 2. A view of the computation grid including indi-
cations of velocity, water level points, and integration
boundaries. Also, the subdomains of a water level domain
(left) and a momentum domain (right) are indicated as well
as the control domain (gray area) used to compute the
advection.
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to account for these variations. The method described
below reduces in a 1-D setting to the so-called conveyance
method. This method is generally used in 1-D models for
the computation of river flow. Early work on this is done
by Lotter [1933] and Lorentz et al. [1926]. Among others,
Chow [1959] and Cunge et al. [1980] give an introduction
to this concept. Yen [2002] gives an overview of the hy-
draulic resistance in open channels and also treats various
formulations for a resistance coefficient when the depth is
nonuniform. In this paper, this concept is generalized for a
two-dimensional setting.

[16] Based on the structure of the staggered grid, it is
useful to divide the momentum domain in four quarters.
First, the friction in a quarter of a cell is derived. The total
friction is the sum of the friction of these quarters. The
quarter-domain �NE

m;n is taken as an example. The friction is
then defined by:

~F
x
fric :�NE

m;n
¼
ZZ
�NE

m;n

cf jUpjupd� with jUpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

p þ v2
p

q
ð12Þ

where cf is the dimensionless friction coefficient as defined
in equation (5) and up and vp are the high resolution, depth-
averaged velocities in x direction and y direction. These are
defined by:

up x; y; tð Þ ¼
XI

i¼1

XJ

j¼1

up:i;j�pi;j and vp x; y; tð Þ ¼
XI

i¼1

XJ

j¼1

vp:i;j�pi;j

ð13Þ

where up:i;j and vp:i;j are the discrete, subgrid velocity com-
ponents, defined in the center of a pixel. This high-resolution
velocity field is constructed in order to account for varying
roughness and depth within a momentum domain. However,
on subgrid level the spatial variation of the velocity is
unknown. A relation between the subgrid velocity field and
the coarse-grid velocity field needs to be determined. The
first step is to assume a uniform flow direction within a quar-
ter of a momentum domain. This excludes the internal circu-
lations, convergence, and divergence of the flow within this
domain. The subgrid velocity is then a linear function of the
coarse-grid velocity with a dimensionless factor �p :

up ¼
u

�p
and vp ¼

v

�p
for x; yð Þ 2 �mþ1

2;n
\ �NE

m;n ð14Þ

[17] The friction in domain �NE
m;n can be rewritten to:

~F
x
fric

�NE
m;n

¼ umþ1
2;n
jUNE

m;n j
ZZ
�NE

m;n

cf

�2
p

d� for x; yð Þ 2 �mþ1
2;n
\ �NE

m;n

with jUNE
m;n j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

mþ1
2;n
þ v2

m;nþ1
2

q
ð15Þ

[18] Note that the absolute velocity is different for each
quarter domain. Especially, when parts of the domain are
dry, the flow is now not affected by artificial frictional
effect of inactive parts in other quarters. Finding a defini-
tion for �p results in a modified friction coefficient that
accounts for variations in velocity due to depth and rough-

ness variations within a momentum domain. After assum-
ing a uniform flow direction, the derivation of �p is
performed in streamwise direction. For simplicity, the deri-
vation of the formulation for �p is shown for a 1-D flow in
positive direction. The definition of �p is, however, inde-
pendent of the flow direction, as will become clear from
equation (18). The coarse-grid velocity within domain �NE

m;n
is defined as the volume average of the local subgrid
velocities :

u ¼ 1

V�NE
m;n

ZZ
�NE

m;n

Hupd� for x; yð Þ 2 �mþ1
2;n
\ �NE

m;n ð16Þ

The main assumption for defining �p is assuming a uniform
friction slope within domain �NE

m;n. The friction slope is the
ratio between the water level gradient and the friction term,
for positive flow in x direction:

S ¼
cf u2

p

gH
¼ uniform for x; yð Þ 2 �mþ1

2;n
\ �NE

m;n ð17Þ

The friction slope equals the water level gradient and bed
slope in case of steady uniform flow. Parameter �p

can now be determined by substituting equation (16) into
equation (14) and by writing up in terms of the friction
slope:

�p ¼
u

up
¼

1
V

�NE
m;n

ZZ
�NE

m;n

Hupd�

up
¼

ZZ
H

ffiffiffiffiffiffiffi
SgH
cf

q
d�ffiffiffiffiffiffiffi

SgH
cf

q
V�NE

m;n

¼
ffiffiffiffiffi
cf

H

r
1

V�NE
m;n

ZZ
�NE

m;n

H
ffiffiffiffiffiffiffiffiffiffiffi
H=cf

q
d�

ð18Þ

�p relates the subgrid and the coarse-grid velocity field.
Note that S can be brought outside the integral, as it is
assumed uniform within the considered domain. The fric-
tion for domain �NE

m;n becomes, after substituting �p into
equation (15):

~F
x
fric

�NE
m;n

¼ umþ1
2;n
jUNE

m;n j
V 3

�NE
m;nZZ

�NE
m;n

H
ffiffiffiffiffiffiffiffiffiffiffi
H=cf

p
d�

" #2 ¼
umþ1

2;n
jUNE

m;n jV�NE
m;n

Hf
�NE

m;n

ð19Þ

using Hf
�NE

m;n
¼

ZZ
�NE

m;n

H
ffiffiffiffiffiffiffiffiffiffiffi
H=cf

p
d�

V�NE
m;n

2
6664

3
7775

2

ð20Þ

where Hf is introduced as the ‘‘friction depth.’’ This friction
depth is independent of the direction of the flow and can be
interpreted as a weighed friction coefficient. It only
depends on the subgrid depths and roughness coefficients
within the considered domain. The friction depth is

VOLP ET AL.: SUBGRID-BASED FINITE VOLUME METHOD

4129



comparable to the ‘‘effective depth’’ described by, for
example, Defina [2000] or Yu and Lane [2011]. However,
the friction depth takes variations in depth as well as varia-
tions in roughness into account. It also accounts for dry
areas within this domain. In the limit of one subgrid cell in
a coarse-grid cell, the friction depth reduces to Hf ¼ H

cf
.

[19] A momentum domain is covered by four subdo-
mains (�ll

mþ1
2;n

with ll ¼ NE ;NW ; SE ; SW½ �) each with

their local contribution to the friction (equation (19)). The
total friction of a u momentum domain becomes:

~F
x
fric ;�

mþ1
2
;n
¼ umþ1

2;n

jUNE
m;n jV�NE

m;n

Hf
�NE

m;n

þ
jUSE

m;njV�SE
m;n

Hf
�SE

m;n

þ
jUNW

mþ1;njV�NW
mþ1;n

Hf
�NW

mþ1;n

þ
jUSW

mþ1;njV�SW
mþ1;n

Hf
�SW

mþ1;n

0
@

1
A

¼ umþ1
2;n

X4

ll¼1

jUlljV�ll

mþ1
2
;n

Hf�ll

within � ¼ �mþ1
2;n

ð21Þ

[20] In this way, the effect of small-scale velocity varia-
tions on the friction is considered by accounting for high-
resolution bathymetry and roughness data.
2.3.2. Pressure Force

[21] The third term of equation (11) is the pressure force.
Assuming a hydrostatic pressure gives:

~F
x
pres �

mþ1
2
;n

¼
ZZ
�

mþ1
2
;n

H
dP

dx
d�

¼
ZZ
�

mþ1
2
;n

gH
�mþ1;n � �m;n

�x
d�

¼ g
V�

mþ1
2
;n

�x
�mþ1;n � �m;n

� �

where the pressure gradient is assumed to be uniform
within a domain �mþ1

2;n
.

2.3.3. Inertia and Advection of Momentum
[22] Inertia and advection are given by the first two terms

of equation (11). Rewriting these gives:

uVð Þt þ ~F
x
adv ¼ utV þ uVt þ usE Q

u
sE � usW Q

u
sW þ usN Q

v
sN

� usS Q
v
sS for x; yð Þ 2 �mþ1

2;n

ð22Þ

[23] Variables with an over bar, such as u, indicate a
value that is missing at the specific grid location. Subscript
s refers to the variable at an edge of the domain �mþ1

2;n
, see

Figure 2. The last four terms represent the momentum
fluxes in and out of domain �mþ1

2;n
. Here a momentum con-

servative scheme for advection is derived, based on Stelling
and Duinmeijer [2003], Kramer and Stelling [2008], and
Kernkamp et al. [2011]. The missing velocity values are
computed by a first-order upwind scheme. Then, only the
discharges Qs at the faces of the momentum volume are
missing. These are the discharges corresponding to multi-
ple velocity points Q

v
sS ;Q

v
sN

� �
and those located at a water

level point Q
u
sE ;Q

u
sW

� �
. When substituting the continuity

equation into equation (22), and for simplicity of notation
assuming positive flow direction, it can be rewritten as:

utV þ Q
u
sW umþ1

2;n
� um�1

2;n

� �
þ Q

v
sS umþ1

2;n
� umþ1

2;n�1

� �
for x; yð Þ 2 �mþ1

2;n

ð23Þ

[24] The discharge over a whole face of a water level do-
main is known based on continuity (equation (9)). How-
ever, the distribution of the discharge over a cell face is
unknown and can be chosen. A distribution of the discharge
over the face based on friction and water depth is used. The
unknown discharges Q

u
sW and Q

v
sS

� �
are based on the dis-

charges at the faces of the subdomains �ll
m;n of a water level

domain (ll ¼ SW ;NW ;NE ; SE , Figure 2). First, we com-
pute Q

v
sS and subsequently Q

u
sW . This results in the full

advection and inertia terms.
[25] In order to find the distribution of the discharge over

a face, a subgrid velocity field is constructed. The proce-
dure is similar to the one used for the formulation of the
friction term. The construction of the subgrid velocity at
face sS

m;n (the face of a water level domain) is used as exam-
ple. To guarantee continuity, the subgrid velocity field is
directly related to the discharge at the face:

Qv
s ¼ vm;n�1

2

Z
s

Hdx ¼ vm;n�1
2
As ¼

Z
s

vpHdx

with x; yð Þ 2 s ¼ sS
m;n

Similar to equation (14), the subgrid velocity is a linear
function of the coarse-grid velocity, using the dimension-
less factor ð�pÞ :

vm;n�1
2
¼ �pvp x; yð Þ with x; yð Þ 2 s ¼ sS

m;n

The discharge over face sS
m;n is then defined by:

Qv
sS

m;n
¼ Qv

sSW
m;n
þ Qv

sSE
m;n
¼
Z
sSW

m;n

vpHdxþ
Z
sSE

m;n

vpHdx

¼ vm;n�1
2

Z
sSW

m;n

H

�p

dxþ
Z
sSE

m;n

H

�p

dx

0
B@

1
CA:

ð24Þ

Similar to equation (17), �p is determined by assuming a
uniform friction slope (equation (17)). Parameter �p and
the corresponding friction depth (Hf) are defined in a simi-
lar way as for the derivation of �p :

�p ¼
ffiffiffiffiffi
cf

H

r
Z

sSE;SW
m;n

H
ffiffiffiffiffiffiffiffiffiffiffi
H=cf

p
dx

AsSE;SW
m;n

and

Hf
s
SE;SW
m;n

¼

Z
sSE;SW

m;n

H
ffiffiffiffiffiffiffiffiffiffiffi
H=cf

p
dx

AsSE;SW
m;n

2
666664

3
777775

2 ð25Þ

Considering equation (24) and the definition of the friction
depth above, the discharge over a subface ðsSE

m;nÞ is :
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Qv
sSE

m;n
¼ vm;n�1

2

Z
sSE

m;n

H
ffiffiffiffiffiffiffiffiffiffiffi
cf =H

p
dx

ffiffiffiffiffiffiffiffiffiffi
Hf

sS
m;n

q ð26Þ

The discharges at other subfaces can be found in a similar
way. The discharge Q

v
sS

mþ1
2
;n

is the sum of the discharges over

the two subfaces:

Q
v
sS ¼ Qv

sSE

m;n�1
2

þ Qv
sSW

mþ1;n�1
2

ð27Þ

Discharge Q
u
sm;n

, that is, the discharge through the cell cen-
ter of a water level domain, is determined by using continu-
ity and the discharge of the subfaces. First, a control
volume is composed using the subdomains �NE

m;n and �SE
m;n

(gray area in Figure 2). Continuity in this domain implies:

V�NW;SW
m;n

� �
t
¼ Qu

m�1
2;n
� Q

u
sm;n
þ Q

v
sSE

m;n
� Q

v
sNW

m;n
ð28Þ

The first and second terms are already known, as these are
based on values of the previous and the current time step.
The two latter terms are determined with the aforemen-

tioned method. The discharge at the cell center Q
u
sm;n

� �
fol-

lows directly.
[26] The inertia and advective terms from equation (22)

are now defined (for positive flow direction) by using equa-
tions (24) and (28) by:

utV þ Q
u
sW umþ1

2;n
� um�1

2;n

� �
þ Q

v
sS umþ1

2;n
� umþ1

2;n�1

� �
¼ utV þ adv uð Þ

adv umþ1
2;n

� �
¼ umþ1

2;n
� um�1

2;n

� �
Q

u
sm;n
þ umþ1

2;n
� um�1

2;n�1

� �
Q

v
sSE

m;n
þ Q

v
sSW

mþ1;n

� �
for x; yð Þ 2 �mþ1

2;n

ð29Þ

[27] This formulation is momentum conservative and
accounts for subgrid scale variations in roughness and
depth, including flooding and drying.
2.3.4. Time Integration

[28] In the previous sections, subgrid effects are consid-
ered in the evaluation of the momentum and continuity equa-
tions. The time integration is semi-implicit for the friction
term and fully explicit for the advection. The time step is,
therefore, limited by the Courant-Friedrichs-Lewy (CFL)
condition based on velocity. This could be avoided by apply-
ing a locally implicit method [Kramer and Stelling, 2008].
The so-called �-method is used for the time integration of
the advection and gravity term. The time discretization for
the continuity and momentum equations results in:

V kþ1
m;n � V k

m;n

�t
þ ukþ�

mþ1
2;n

Ak
sE

m;n
� ukþ�

m�1
2;n

Ak
sW

m;n
þ vkþ�

m;nþ1
2
Ak

sN
m;n

� vkþ�
m;n�1

2
Ak

sS
m;n
¼ 0

ð30Þ

ukþ1
mþ1

2;n
� uk

mþ1
2;n

�t
þ

adv uk
mþ1

2;n

� �
V k

�
mþ1

2
;n

þ g
�kþ�

mþ1;n � �kþ�
m;n

�x

þ
ukþ1

mþ1
2;n

V k
�

mþ1
2
;n

X4

ii

jUii
mþ1

2;n
jkV k

mþ1
2;n

Hk
f
�ii

mþ1
2
;n

¼ 0

ð31Þ

The variables at kþ � are defined by:

f kþ� ¼ 1� �ð Þf k þ �f kþ1

[29] In the examples, we use �¼ 1 as steady-state solu-
tions are considered. In a subgrid-based model, the volume
of a cell is not necessarily a linear function of the water
level, as the (wet) cell surface area is a function of the
water level as well. An iterative method is needed to solve
the system of equations (30). Casulli [2009] describes how
such a weakly nonlinear system can be solved by means of
a Newton iteration. It gives a rigorous proof of the conver-
gence of this method for a sparse system of nonlinear equa-
tions. This method is adopted here as well.

3. Examples

3.1. Compound Channel

[30] A compound channel is defined as a channel with a
nonuniform cross section. Examples of such systems are
rivers with a main channel and flood plains or salt marshes
with channels cutting through [Fagherazzi and Furbish,
2001]. Especially, the channels on intertidal flats and in salt
marshes are relatively small-scale features compared to the
size of an estuary. In order to control the computational
cost, small-scale bathymetric variations are often not repre-
sented well in models covering a large domain. Cross
sections and storage capacity are, therefore, often underes-
timated. In this example, a straight compound channel is
considered, emphasizing the effect of a spatially nonuni-
form friction, due to variations in depth and roughness. We
focus on the conveyance of the system. This example is
chosen to show the effect of the nonlinearity of the friction
term, as was described in the introduction. The dimensions
of the compound channel are based on marshes found in
the eastern part of the Western Scheldt, at the Verdronken
land van Saeftinghe. The bathymetry is defined on a sub-
grid with pixel sizes of 1 m � 1 m. The computational do-
main is 63 m wide and 300 m long. The narrow channel is
3 m wide and the bed level is 3 m below the bed level of
the flats. The intertidal flats are 30 m wide (Figure 3) and
have a higher roughness due to, for example, vegetation.
This higher roughness is represented by lower values of the
Ch�ezy coefficient. Other formulations for the friction or
drag force can be used. Water levels are imposed at the
boundaries, forcing the water level gradient equal to the
bed slope of 10�4. Nine different water levels are imposed
to show the depth dependency. All water levels are within
the expected tidal range, see Figure 3. In its steady state,
the flow is (almost) uniform in streamwise direction. Dif-
ferences in results are, therefore, caused by the formulation
of the friction term. Three model types are applied to deter-
mine the influence of the nonlinear interaction between
friction coefficient, velocity, and depth. Table 1 gives an
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overview of the settings of the three models. Model A is
the high resolution reference run: The computation grid is
equal to the high-resolution subgrid. The results of the two
other models are compared to the results of this model. The
results of the coarser models (B and C) can in principle not
be better than the result of the high-resolution model. The
presented method only makes an estimation of the flow on
scales smaller than a coarse-grid cell and thus neglects all
processes except for friction on that scale. Model A uses
the classic formulation for the continuity and momentum
equations, as there is no underlying subgrid. Model B is a
coarse-grid model that uses a subgrid-based formulation for
the continuity equation only. Cross sections and cell vol-
umes are subgrid-based computations, while average values
for the velocity and roughness are used in the friction term
(the classic approach). Model C uses the full subgrid-based
finite volume method, as described in the previous section.
Models B and C use a computation grid with only one cell
in transverse direction, the computation cell size is 60 m �
63 m. As these two models have only one cell in transverse
direction, effectively the flow is simulated in one dimen-
sion. Model A simulates the flow in two dimensions,
including transverse interactions.

[31] The relative deviation in conveyance (discharge) is
shown for the nine different water levels in Figure 4. Model
B under predicts the conveyance, especially for low water
levels. For these low water levels, the difference in depth
between the channel and the flat is relatively large. A uni-
form bed friction is then a poor representation. The relative
difference in depth decreases for higher water levels. A uni-
form bed friction becomes a more reasonable estimate. The
under prediction of the conveyance can be corrected by
choosing a lower friction coefficient (cf). Unfortunately, the
correction depends on the grid size and on the water level
as shown in Figure 4. This makes a consistent calibration
for cf difficult. The results of Model C are very close to the

results of Model A. For all water levels, the deviation is
less than 1%. The high-resolution simulations of Model A
show a small decrease in water level in the center of the
channel. This is due to the dynamic pressure (Bernoulli’s
Principle), which generates a small exchange of momentum
between the channel and the flats. This is not observed in
the coarse-grid simulations, as they have only one cell in
cross-flow direction. This explains the small deviations
found between Models C and A.

[32] We conclude that the computational cost for Models
B and C are only a fraction of the time needed to compute
the simulation with high resolution (Model A), as follows
from the last row in Table 1. This saving in computation
time is a consequence of the strong reduction in the number
of computation cells. Despite the coarse resolution of the
coarse grid, the results for the subgrid-based finite volume
method (Model C) are accurate and the error shows no de-
pendence on depth.

3.2. U-Bend

[33] In the second example, the flow in a U-shaped bend
is considered in two dimensions. A depth-averaged simula-
tion is performed, neglecting three-dimensional flow fea-
tures. We aim to show that the model is capable of
simulating flow in a complex geometry with advection
effects, similar to cut-cell methods [Rosatti et al., 2005].
Figure 5 shows a channel with a deep outer bend, a shallow
inner bend, and an overall bed slope of 5.0 � 10�4 in flow
direction. The inner radius of the bend is 50 m and the
channel width is 100 m. In the lower panel of Figure 5, the
cross section of the bed level is plotted at the transects AA0

and CC0 showing a mild slope in transverse direction. The
high-resolution bathymetry is described on 1 � 1 m2-sized
pixels. The location of the land-water interface at the outer
bend is fixed as it is defined as a vertical wall. The location
of the land-water boundary at the inner bend depends on
the water level and, therefore, on the discharge. For a cut-
cell method, it is difficult to locate this inner boundary. The
boundary is automatically set in this subgrid-based model,

Figure 3. A schematic representation of the compound
channel, the flood plains are covered by vegetation, repre-
sented by a lower Ch�ezy coefficient. Also the nine different
water levels, which serve as boundary conditions for the
various simulations are indicated.

Table 1. An Overview of the Three Different Models Performed
for the Compound Channel

Model A Model B Model C

Computation cell 1 m � 1 m 60 m � 63 m 60 m � 63 m
Use of subgrid No Continuity equation Full set of equations
Computational cost 100% 0.01% 0.02%

Figure 4. Discharge results for the compound channel
example. The relative deviation of the discharge compared
to the reference runs (Model A) is plotted for all water lev-

els Discharge deviation ¼ QB�QA

QA
� 100

� �
. Results from

Model B, subgrid-based continuity equation, are indicated
by squares and those of Model C, subgrid-based finite vol-
ume approach, with triangles.
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because (parts of) coarse-grid cells are allowed to be dry. A
constant discharge is imposed at the inflow boundary con-
dition. At the outflow a Neumann boundary is used, impos-
ing the water level gradient equal to the bed slope. These
boundary conditions allow the flow to choose its own flow
domain within the prescribed bathymetry. A stationary so-
lution is determined for six different discharges
Q ¼ 30; 50; 80; 100; 120; 300m3=sð Þ. Four different compu-

tation grids with cell sizes of 5 � 5, 10 � 10, 30 � 30, 50
� 50 m2 are used. Each simulation is run with and without
using the full subgrid method.

[34] The transects AA0, BB0, and CC0 in Figure 5 are
defined from the outer bend to the inner bend. Water levels
along these transect are plotted in Figure 6 for simulations
with subgrid for all different grid sizes. For clarity, only the
results of simulations forced with two different discharges
are presented. The results for the four cell sizes are plotted
with a different color and marking. The results show a min-
imum grid size dependency. Especially those from the sim-
ulations based on the 5 � 5 m2 (black line) and 10 � 10 m2

(blue, squares) sized grids are almost equal. The error
increases slightly for the larger grids (30 � 30 m2 (red,
open circles) and 50 � 50 m2 (yellow, closed circles)). A
transverse water level gradient is found in cross-section
BB0 to create the required centrifugal force. The length of
the transects is a measure of the wet domain. This transect
increases for higher discharges and is consistent for the var-
ious grid sizes. The largest grid sizes are in the same order
of magnitude as the width of the flow domain. Only 1–3
cells cover the flow in transverse direction when the chan-
nel is not completely submerged. Some flow characteristics
can then not be captured anymore. The assumption of a
uniform flow direction in a coarse-grid cell is partly vio-
lated. However, the results of the larger grids for the higher

discharge (right panel of Figure 6) are still in fairly good
agreement.

[35] Simulations for various grids and discharges are
also performed without using subgrid. The water level
results show much larger variations between the grids and
only for the two smallest grid sizes, a reasonable result is
obtained. Overall, the water level slope in streamwise
direction is much larger then the water level slopes found
for the subgrid-based simulations. This artificial friction is
caused by the discretization, see Figure 7. Note that in this
figure the minimum water level in the channel is subtracted
from the local water level, showing the relative setup only.
The difference between the simulations with and without
subgrid is over 40% for the first case (cell size is 10 � 10
m2 and Q¼ 100 m3/s). The setup in water level increases
for larger discharges and larger cells, up to 65% (cell size
is 30 � 30 m2 and Q¼ 300 m3/s) compared to the higher
resolution simulations.

[36] Obviously, the velocity field is less detailed and
more patchy when using a low-resolution computation
grid. From the streamlines in Figure 8, we can, however,
conclude that the bulk flow is modeled correctly with the
subgrid model. Various streamlines are drawn starting at

Figure 5. The bathymetry of the U-bend with a deep
outer bend and a shallow inner bend. Transects AA0;BB0,
and CC0 are used for presenting several results.

Figure 6. Water level results over three transects for dis-
charges Q¼ 50,120 m3/s, based on simulations with sub-
grid and computation cells with size 5 � 5 m2 (green),
10 � 10 m2 (blue), 30 � 30 m2 (red), and 50 � 50 m2

(yellow).

Figure 7. The minimum water level is subtracted from
the local water level, this visualizes the increase of water
level (setup) in the channel. (a) The first plot is a subgrid-
based simulation with a cell size of 10 � 10 m2 and a dis-
charge of 100 m3/s and (b) the second is the counter plot
without subgrid.
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two different locations using a linear interpolation method
within a momentum volume. Results are shown for simula-
tions using a grid size of 5 � 5 m2 (black), 10 � 10 m2

(red), 30 � 30 m2 (green), and Q¼ 100 m3/s. Although the
overall trajectory of the streamlines from the coarse simula-
tions is correct, it is clear that a linear interpolation is used.
Especially in the bend, the trajectory of the simulation with
the coarsest grid shows deviations that follow from the
interpolation.

[37] The computational cost of these simulations with and
without subgrid is a only few percent of the cost of the high-
resolution simulations. The percentages are similar to the
ones found in the previous example. The reduction in com-
putation time is mainly due to the strong reduction in compu-
tation cells. With this example of a U-bend, it is shown that
the model is capable of representing the correct conveyance
of a flow in a complex geometry with advection effects.

4. Discussion and Conclusion

[38] We presented a two-dimensional, finite volume
approach for shallow water flow that accounts for high-
resolution bathymetry and roughness data. High-resolution
effects are considered in coarse-grid computations via a
subgrid in both the continuity and the momentum equa-
tions. We aimed at increasing the accuracy of two-
dimensional, depth-averaged coarse-grid models without a
substantial increase in computation time.

[39] To account for the small-scale effects of bathymetry
and roughness in formulating the friction and advection
terms, a high-resolution velocity field is constructed. The
construction is based on two main assumptions. First, we
assumed that the flow within a quarter of a cell has a uniform
direction and that it scales linearly with the coarse-grid veloc-

ity. Internal circulations, convergence, and divergence of the
flow are thereby excluded within that domain. Variations in
magnitude of velocity on small scale are, however, allowed.
This assumption of a uniform flow direction within a cell is
made in traditional models as well, but small-scale variations
of the magnitude of the velocity field are then excluded too.
Second, a uniform friction slope is assumed for the construc-
tion of the high-resolution velocity field. This assumption is
especially preferred over a uniform velocity for flows in
areas with a large variation in bathymetry and/or roughness.
In flow domains, where the variation in bathymetry and
roughness is small or in domains where the friction is not the
dominant process, the assumption of a uniform friction slope
is as good as the assumption of a uniform velocity. In sum-
mary, the method gives significant improvement of the
results in shallow flows with small-scale depth and roughness
variations and has no negative effects in other cases.

[40] In theory, the size of the subgrid can be as small as
available. The limitations should, however, be kept in
mind. The model is based on the depth-averaged shallow
water equations. This implies that the flow around three-
dimensional roughness elements is not resolved and has to
be modeled within the friction coefficient. The minimum
size of the subgrid should at least be several times the size
of the roughness elements. For example, LIDAR data can
have resolutions much smaller than this typical size. It is
still a challenge to transform these small-scale features in a
roughness coefficient. The size of the coarse grid of the
new model is mainly limited by the assumption of a uni-
form flow direction. If small-scale flow directions have to
be resolved, a small coarse grid is required. This limitation
is less strict than the limitation of the grid size for tradi-
tional models. There, the horizontal scale of the variation
in bathymetry and roughness determines the size of the grid
cell. This is generally smaller than the size of the circula-
tions or significant deviations in flow direction of interest.
The grid size of a coarse grid in a subgrid model simulation
can, therefore, be larger than the grid size of a traditional
model without loss of accuracy. This results in a strong
decrease in computational time.

[41] The presented model offers an improvement of tra-
ditional coarse-grid models and captures moving bounda-
ries automatically without any preprocessing. The size of
the computational grid is now determined by the spatial
scales of the flow direction and much less on the spatial
scales of bathymetry and roughness variations. The final
result is a strong reduction in computational time, without
loss of accuracy.
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